Galaxy Quenching at the High Redshift Frontier: Evidence for AGN Feedback Quenching Galaxies in the first $1 - 3$ Gyrs

Dr. Asa F. L. Bluck

Assistant Professor of Physics FlU Miami

Collaborators: Joanna (Asia) Piotrowska; Paul Goubert; Simcha Brownson; Christopher J. Conselice; Roberto Maiolino; et al.

The Big Theoretical Problem

Number DensityNumber Density

Up to ~90% of baryons are in ionized hot (~107.5 K) halo → How is this system stable for *billions* of years?

The Big Theoretical Problem

Gas Inflow (along DM streams)

ogical / Theoretical Perspective)Supernova (Cosmological / Theoretical Perspective)^{Supernova} 1) Why is star formation so inefficient?

Ratio Jets shocks shocks ou₂ pwWhy is the hot gas halo stable to cooling & collapse? Number Renefy (Galaxy Groups & Clusters / X-ray & Radio Perspective)

Gas Inflow 3) Why is the galaxy population bimodal? (Galaxy Evolution / Optical – NIR Perspective)

(along DM streams)

Only ~5-10% of baryons reside in Stars Up to ~90% of baryons are in ionized hot (~107.5 K) halo → How is this system stable for *billions* of years?

DM halo mass function x $\Omega_{\rm h}$

E $\frac{1}{\pi}$

EAGLE Illustris IllustrisTNG

4.3 5.8 7.6 100

1000 2.0 4.2 6.4 4.3

Schaye+15 Vogelsberger+14a,b Nelson+18; Pillepich+18; Springel+18; Marinacci+18

Schaye+15 Vogelsberger+14a,b Nelson+18; Pillepich+18; Springel+18; Marinacci+18

Kinetic mode

H

Schaye+15 Vogelsberger+14a,b Nelson+18; Pillepich+18; Springel+18; Marinacci+18

> Theoretical predictions for the observable consequences of AGN feedback quenching

SDSS

Sloan Digital Sky Survey: ~650k Galaxy Spectra $@ z = 0.02 - 0.2$ (York+2000; Abazajian+09)

 \triangleright Stellar masses (Kauffmann+03)

- \triangleright SFRs (Brinchmann+04)
- \triangleright Emission line fluxes

MPA-JHU release of spectrum measurements

- \triangleright Morphological parameters (Simard+11, Mendel+14)
- \triangleright Halo masses & central/satellite classification (Yang+07 group catalogues)
- \triangleright Velocity dispersions (Blanton+05)

Heating by Virial Shocks $(E_{\text{Shocks}} \sim M_{\text{Halo}})$

Supernova Explosions $(E_{SN} \sim M_*)$

NASA/ESA/NRAO/STScI NASA/ESA/JPL NASA/ESA/JPL NASA/ESA/JPL NASA/CXC/U.Texas

A Classic ML Classification Problem

Black Hole Mass is the most important parameter for classifying galaxies into star forming & quenched types

- \triangleright In simulations this is true regardless of the implemented AGN feedback model
- \triangleright In observations the result is robust to different choices of M_{BH} calibration

Piotrowska, Bluck+2022 **arXiv:2112.07672**

Black Hole Mass is the most important parameter for classifying galaxies into star forming & quenched types

- \triangleright In simulations this is true regardless of the implemented AGN feedback model
- \triangleright In observations the result is robust to different choices of M_{BH} calibration

Dynamically measured M_{BH} form Terrazas+2017 central galaxy sample

The importance of AGN luminosity is dwarfed by that of supermassive black hole mass

The importance of AGN luminosity is dwarfed by that of supermassive black hole mass

Entering the Space Age: The High-z Frontier

JWST-CEERS

- 100 sq arcmin observations within HST EGS legacy field
- Observations with NIRCam, MIRI, NIRSpec
- This Project: NIRCam Photometry
- Data Papers: Finkelstein+23a,b; Bagley+23; Kartaltepe+23; Kokevski+23; et al.
	- Ancillary Data: Duncan+18 (SED fitting); Ormerod+24 (morphologies)

HST-CANDELS

- 720 sq arcmin observations within COSMOS, GOODS, UDS & EGS fields
- Observations with WFC3 & ACS
- This Project: Full Dataset + Follow-up
- Data Papers: Faber+11; Grogin+11; Koekemoer+11; et al.
- Ancillary Data: Dimauro+18 (morphologies & SED fitting)

Star Formation Quenching in JWST-CEERS:: Simulations Predictions

Theoretical Perspective **Constructional Perspective Observational Perspective**

Star Formation Quenching in JWST-CEERS:: Simulations Predictions

Theoretical Perspective **Constructional Perspective Observational Perspective**

 $→$ **Clear method for testing AGN feedback paradigm @ high-z in extant photometric observations.**

Star Formation Quenching in JWST-CEERS:: Observational Results

Defining Quiescence **Contains and Containers** Observational Results

Stable quenching dependence on ɸ* across 13 Gyrs of Cosmic History

-> Expected result of AGN feedback driven quenching models!

Star Formation Quenching in JWST-CEERS: Observational Results

High mass quiescent galaxies have deeper central potentials than star forming galaxies *at a fixed stellar mass*

(precisely as predicted in simulations)

Star Formation Quenching in JWST-CEERS: Observational Results

Summary

- \triangleright AGN Feedback is predicted by cosmological simulations to quench high mass galaxies across cosmic time.
- \triangleright The key observable associated with AGN feedback quenching is black hole mass (M_{BH}) *NOT* AGN luminosity.
- \triangleright We find excellent agreement with simulations in z \sim 0 observations with the SDSS (see Piotrowska+22).
- \triangleright Simulations predict that in lieu of an M_{BH} measurement, the stellar potential (ɸ*) should best predict quiescence in photometric data.
- \triangleright We confirm this result with HST and JWST observations of galaxies at $z = 0.5 - 8$ (see Bluck+23,24).
- \triangleright Hence, AGN feedback is likely quenching galaxies across the bulk of cosmic history, starting within the first Gyr!
	- v **SDSS & Simulations: Piotrowska, Bluck et al. (2022), MNRAS, 512, 1052**
	- v **MaNGA Kinematics: Brownson, Bluck et al. (2022), MNRAS, 511, 1913**
	- v **Machine Learning: Bluck et al. (2022), A&A, 659, 160**
	- v **HST & Simulations: Bluck et al. (2023), ApJ, 944, 108**
	- v **JWST & Simulations: Bluck et al. (2024), ApJ in press, APJ, 961, 163**
	- v **Environment: Goubert, Bluck et al. (2024), MNRAS, 528, 4891**

Why is Black Hole Mass a Tracer of Energy Input to the System? And what are the limitations of this approach?

• coupling efficiency

 $= (1 - \eta) \int \dot{M}_{acc}(t) dt$ ֧֚֚֝
֧֚֚֚֚֚֚֚֚֚֚֚֚֚֚֝֝֓
֧֚֚֝ $= \int \dot{M}_{BH}(t) dt$ ֧֚֝
֧֚֚֝
֧֚֝

 $+ \Delta M_{BH,mergers}$

See Bluck+20a for further discussion (arXiv:1911.08857)

