Galaxy Quenching at the High Redshift Frontier: Evidence for AGN Feedback Quenching Galaxies in the first 1 – 3 Gyrs

FLORIDA INTERNATIONAL UNIVERSITY

Dr. Asa F. L. Bluck

Assistant Professor of Physics FIU Miami

Collaborators: Joanna (Asia) Piotrowska; Paul Goubert; Simcha Brownson; Christopher J. Conselice; Roberto Maiolino; et al.

The Big Theoretical Problem

Number Density

Up to ~90% of baryons are in ionized hot (~10^{7.5} K) halo \rightarrow How is this system stable for <u>billions</u> of years?

The Big Theoretical Problem

Gas Inflow (along DM streams)

1) Why is star formation so inefficient? (Cosmological / Theoretical Perspective)

2) Why is the hot gas halo stable to cooling & collapse? (Galaxy Groups & Clusters / X-ray & Radio Perspective)

3) Why is the galaxy population bimodal? (Galaxy Evolution / Optical – NIR Perspective)

(along DM streams)

Only ~5-10% of baryons reside in Stars Up to ~90% of baryons are in ionized hot (~10^{7.5} K) halo → How is this system stable for <u>billions</u> of years? - - - DM halo mass function x $\Omega_{\rm b}$

galaxy observations

AGN Feedback? Schaye+15 Z EAGLE

 Vogelsberger+14a,b

4.3 5.8 7.3 100

2.0 4.2 6.4 4.3

Nelson+18; Pillepich+18; Springel+18; Marinacci+18

IllustrisTNG

Nelson+18; Pillepich+18; Springel+18; Marinacci+18

Vogelsberger+14a,b

 4.3
 5.8
 7.3
 100
 550

 Gas Density [log M_{sun} kpc⁻²]
 Gas Velocity

Schaye+15 マス EAGLE

Theoretical predictions for the observable consequences of AGN feedback quenching

Vogelsberger+14a,b

Nelson+18; Pillepich+18; Springel+18; Marinacci+18

IllustrisTNG

Sloan Digital Sky Survey: ~650k Galaxy Spectra @ z = 0.02 - 0.2 (York+2000; Abazajian+09)

Stellar masses (Kauffmann+03)

- ➢ SFRs (Brinchmann+04)
- Emission line fluxes

MPA-JHU release of spectrum measurements

- Morphological parameters (Simard+11, Mendel+14)
- Halo masses & central/satellite classification (Yang+07 group catalogues)
- Velocity dispersions (Blanton+05)

$\begin{array}{l} \mbox{Heating by Virial Shocks} \\ (E_{\rm Shocks} \thicksim M_{\rm Halo}) \end{array}$

Supernova Explosions ($E_{SN} \sim M_*$)

NASA/ESA/NRAO/STScl

NASA/ESA/JPL

NASA/CXC/U.Texas

A Classic ML Classification Problem

Black Hole Mass is the most important parameter for classifying galaxies into star forming & quenched types

- > In simulations this is true regardless of the implemented AGN feedback model
- > In observations the result is robust to different choices of M_{BH} calibration

Piotrowska, Bluck+2022 arXiv:2112.07672 Black Hole Mass is the most important parameter for classifying galaxies into star forming & quenched types

- > In simulations this is true regardless of the implemented AGN feedback model
- > In observations the result is robust to different choices of M_{BH} calibration

Dynamically measured M_{BH} form Terrazas+2017 central galaxy sample The importance of AGN luminosity is dwarfed by that of supermassive black hole mass

The importance of AGN luminosity is dwarfed by that of supermassive black hole mass

Entering the Space Age: The High-z Frontier

JWST-CEERS

- 100 sq arcmin observations within HST EGS legacy field
- Observations with NIRCam, MIRI, NIRSpec
- This Project: NIRCam Photometry
- Data Papers: Finkelstein+23a,b; Bagley+23;
 Kartaltepe+23; Kokevski+23; et al.
- Ancillary Data: Duncan+18 (SED fitting); Ormerod+24 (morphologies)

HST-CANDELS

- 720 sq arcmin observations within COSMOS, GOODS, UDS & EGS fields
- Observations with WFC3 & ACS
- This Project: Full Dataset + Follow-up
- Data Papers: Faber+11; Grogin+11; Koekemoer+11; et al.
- Ancillary Data: Dimauro+18 (morphologies & SED fitting)

Star Formation Quenching in JWST-CEERS:: Simulations Predictions

Theoretical Perspective

Observational Perspective

Star Formation Quenching in JWST-CEERS:: Simulations Predictions

Theoretical Perspective

Observational Perspective

Clear method for testing AGN feedback paradigm @ high-z in extant photometric observations.

Star Formation Quenching in JWST-CEERS:: Observational Results

Defining Quiescence

Observational Results

Stable quenching dependence on ϕ_* across 13 Gyrs of Cosmic History

-> Expected result of AGN feedback driven quenching models!

Star Formation Quenching in JWST-CEERS: Observational Results

High mass quiescent galaxies have deeper central potentials than star forming galaxies *at a <u>fixed stellar mass</u>*

(precisely as predicted in simulations)

Star Formation Quenching in JWST-CEERS: Observational Results

Summary

- AGN Feedback is predicted by cosmological simulations to quench high mass galaxies across cosmic time.
- The key observable associated with AGN feedback quenching is black hole mass (M_{BH}) <u>NOT</u> AGN luminosity.
- We find excellent agreement with simulations in z ~ 0 observations with the SDSS (see <u>Piotrowska+22</u>).
- Simulations predict that in lieu of an M_{BH} measurement, the stellar potential (ϕ_*) should best predict quiescence in photometric data.
- We confirm this result with HST and JWST observations of galaxies at z = 0.5 – 8 (see <u>Bluck+23,24</u>).
- Hence, AGN feedback is likely quenching galaxies across the bulk of cosmic history, starting within the first Gyr!
 - SDSS & Simulations: Piotrowska, Bluck et al. (2022), MNRAS, 512, 1052
 - MaNGA Kinematics: Brownson, Bluck et al. (2022), MNRAS, 511, 1913
 - Machine Learning: Bluck et al. (2022), A&A, 659, 160
 - HST & Simulations: Bluck et al. (2023), ApJ, 944, 108
 - JWST & Simulations: Bluck et al. (2024), ApJ in press, APJ, 961, 163
 - Environment: Goubert, Bluck et al. (2024), MNRAS, 528, 4891

Why is Black Hole Mass a Tracer of Energy Input to the System? And what are the limitations of this approach?

 M_{BH} = $\int \dot{M}_{BH}(t) dt$ = $(1 - \eta) \int \dot{M}_{acc}(t) dt$

 $+\Delta M_{BH, mergers}$

See Bluck+20a for further discussion (arXiv:1911.08857)

coupling efficiency

ullet

• aa