Focus on: The Earliest Star Formation

Alice Shapley

Image credit: NASA, ESA, CSA, and STScI

The Spectroscopic Revolution in Our Understanding of Star formation at High Redshift

Alice Shapley

Image credit: NASA, ESA, CSA and STScI

It's the Spectra, Stupid!

Alice Shapley

Image credit: NASA, ESA, CSA, and STScI

Big Questions

Tumlinson J, et al. 2017. Annu. Rev. Astron. Astrophys. 55:389–432 How do baryons cycle through galaxies?

How are galaxies assembled?

Tracing star formation in early galaxies addresses these key questions.

Bursty Star formation at High Redshift

Excess of UV luminous galaxies relative to pre-JWST predictions.

Adamo et al. 2024

Bursty Star formation at High Redshift

Excess of UV luminous galaxies relative to pre-JWST predictions.

Bursty Star Formation in Simulations

Sun et al. 2023

Models with bursty star-formation histories (red line) can reproduce the evolution of the UV luminosity density at z>10 (e.g., FIRE-2 simulations).
Generally predictions are for more burstiness at higher redshift and lower mass.

Bursty Star Formation in Simulations

- H α closely traces the true SFR on ~5-10 Myr timescales.
- UV light traces the true SFR on ~50-100 Myr timescales.
- There should be a measurable difference in the H α -based SFRs vs. the UV-based SFRs if star formation is bursty.

(Clarke et al. 2024)

- Public JADES+CEERS samples: 146 galaxies at z=1.4-7 with robust SFR(H α), SFR(UV), M_{*} \rightarrow the "main sequence" tracing galaxy growth.
- SFR(H α) suggests significantly more scatter \rightarrow bursty SF histories.
- If SF histories are bursty, challenges in estimating M_{*}.

No mass

dependence

in the scatter.

(Clarke et al. 2<u>024)</u>

- Public JADES+CEERS samples: 146 galaxies at z=1.4-7 with robust SFR(Hα), SFR(UV), M_∗ → the "main sequence" tracing galaxy growth.
- SFR(H α) suggests significantly more scatter \rightarrow bursty SF histories.
- If SF histories are bursty, challenges in estimating M_{*}.

No mass

dependence

in the scatter.

(Clarke et al. 2024)

- Intrinsic scatter higher for SFR(Hα) than SFR(UV).
- Same qualitative result for SFR₁₀ vs SFR₁₀₀ (Cole+2023).
- Bursty SF histories. What is redshift and M* dependence, though?

(Endsley et al. 2024)

- Young galaxies at z~6 with low Hα/UV ratios (and low [OIII]) consistent with recent downturn in SFR --> burstiness.
- Such galaxies are more common at fainter M_{UV}.

(Endsley et al. 2024)

- Young galaxies at z~6 with low Hα/UV ratios (and low [OIII]) consistent with recent downturn in SFR --> burstiness.
- Such galaxies are more common at fainter M_{UV}.

What is the timeline of reionization?

- Slow (democratic) vs. rapid (oligarchical) reionization.
- Ionizing photon production rate expressed as:

• The nature of reionization timeline determined by how ξ_{ion} and f_{esc} (LyC) depends on galaxy properties.

(Naidu et al. 2020)

An Ionizing Photon Budget Crisis?

• Based on initial, high estimates of ξ_{ion} from JWST, and other reasonable assumptions (LF, f_{esc} vs. galaxy properties)....reionization completes too early!

• ξ_{ion} from early JWST published work biased high. Need unbiased, spectroscopic (Hα/UV) measures.

(Munoz et al. 2024)

An Ionizing Photon Budget Crisis?

(Pahl et al. 2024; see also Simmonds+2024b)

• Based on initial, high estimates of ξ_{ion} from JWST, and other reasonable assumptions (LF, f_{esc} vs. galaxy properties)....reionization completes too early!

• ξ_{ion} from early JWST published work biased high. Need unbiased, spectroscopic (H α /UV) measures.

An Ionizing Photon Budget Crisis?

(Pahl et al. 2024; See also Simmonds+2024b) • Based on initial, high estimates of ξ_{ion} from JWST, and other reasonable assumptions (LF, f_{esc} vs. galaxy properties)....reionization completes too early!

• ξ_{ion} from early JWST published work biased high. Need unbiased, spectroscopic (H α /UV) measures.

Dust and SFR

- SFR(H α) requires dust correction.
- Initial estimates of nebular dust attenution based on H α /H β .
- No clear evolution in H α /H β at fixed M_{*} at z~3-6.5.
- Extending reach of attenuation vs. M_{*} relation.

Dust Attenuation curve for Individual Galaxies: z=4.4 Example

∢

 $k(\lambda)$ normalized at 9550

4000

5000

GOODSN-17940 (z=4.41) Spectrum has 70+ em/abs features detected.

Based on 11 H recombination lines, nebular attenuation curve is not MW!

6000

7000

λ (Å)

8000

GOODSN-17940 z=4.41 (this work)

Cardelli+1989 (MW)

Gordon+2003 (SMC)

9000

Calzetti+2000

Similar analysis possible for 25 galaxies in the AURORA survey (see Naveen Reddy's talk).

Sanders et al. 2024

Why is the density so high?

GN-z11 (z=10.6)

RXCJ2248-ID (z=6.1)

• Exceptionally high electron densities inferred in, e.g., GN-z11 and RXCJJ2248-ID (based on UV transitions).

 Steady evolution in average inferred electron density vs. redshift.

• Meanwhile, no strong dependence of density on galaxy properties at fixed z.

(Senchyna et al. 2023;Topping et al. 2024a)

Why is the density so high?

• Exceptionally high electron densities inferred in, e.g., GN-z11 and RXCJJ2248-ID (based on UV transitions).

• Steady evolution in average inferred electron density vs. redshift.

• Meanwhile, no strong dependence of density on galaxy properties at fixed z.

Topping et al. 2024, in prep

Why is the density so high?

• Exceptionally high electron densities inferred in, e.g., GN-z11 and RXCJJ2248-ID (based on UV transitions).

• Steady evolution in average inferred electron density vs. redshift.

• Meanwhile, no strong dependence of density on galaxy properties at fixed z.

Topping et al. 2024, in prep

<u>Rest-Optical Spectrum →</u> <u>12+log(O/H)</u>

• Infer 12+log(O/H) (gas-phase oxygen abundance) from nebular emission lines.

• For high redshift (pre-JWST), the standard was to use calibrations of strongest restoptical emission lines from H, O, Ne, N (purple).

• We can do better.

(Shapley et al. 2024a)

JADES-GS-z9-0 z=9.43

Ultradeep NIRSpec spectroscopy spanning rest-UV through 5000AA (including [OIII]4363), yielding C/O, N/O, Ne/O. Other work has highlighted Ar/O.
Use for independent constraints on IMF, star-formation history.

Curti et al. 2024

RXCJ2248-ID (z=6.13)

• Ultradeep NIRSpec spectroscopy spanning rest-UV through 7250AA (including [OIII]4363), yielding C/O, N/O. Other work has highlighted Ar/O.

• Use for independent constraints on IMF, star-formation history.

Topping et al. 2024a

 Rest-UV nitrogen emission in luminous z>6 galaxies implies both high density (n_e≥10⁶ cm⁻³) and N/O like globular clusters.

Topping et al. 2024b)

 Maybe these systems feature dense N-rich ejecta from early stellar populations embedded in globular cluster precursors (Pascale et al. 2023).

- At the same time, sub-solar C/O.
- Maybe these systems feature dense N-rich ejecta from early stellar populations embedded in globular cluster precursors (Pascale et al. 2023).

Beyond O/H: helium abundance

Use He/Hβ to infer He/H at z~6 (3 galaxies).

• Enhanced, and correlated with N/O suggesting nonstandard origin for He and N.

• Degeneracy wrt to electron density. Either He/H is higher than in local systems, or else density is.

 Detection of near-IR Hel line (1.08 μm) will break degeneracy. Easily detected in z~2-3 galaxies.

Yanagisawa et al. 2024

Beyond O/H: helium abundance

He I λ7067

8 He I lines detected at z=4.41

galaxy from AURORA!

• Use He/H β to infer He/H at z~6 (3 galaxies).

 Enhanced, and correlated with N/O suggesting nonstandard origin for He and N.

 Degeneracy wrt to electron density. Either He/H is higher than in local systems, or else density is.

 Detection of near-IR Hel line (1.08 µm) will break degeneracy. Easily detected in z~2-3 galaxies.

 Abundance of He, N, C, Ar, in addition to O sheds light on early star formation through chemical enrichment!

Sanders et al. 2024, in prep

Looking Ahead: The Spectroscopic Promise of JWST

• JWST spectroscopy is bringing many "holy grails" of galaxy formation within view (e.g., robust instantaneous SFRs measured all the way back to Cosmic Dawn).

• Truly remarkable star-formation conditions revealed in the first billion of cosmic time (GN-z11, GHZ2, RXCJ2248-ID), but many puzzles remain.

• For robust statistics and comparisons with models, we need representative samples and sufficient numbers with deep spectra (e.g., Cycle 3 CAPERS program is a start, but low resolution). NIRSpec is up to the task, so we should dream big!

• We can now perform true astrophysical (spectroscopic) measurements where it was previously IMPOSSIBLE.

Mass Metallicity Relation (MZR)

• Variation in metal content of galaxies with galaxy mass indicates how gas cycles through galaxies (inflows, outflows, star formation) – e.g., how does outflow massloading factor vary with galaxy mass and redshift?

(Tremonti et al. 2004)

MZR Evolution at z>3

- Drastically different predictions for massmetallicity relation (MZR) evolution at z>3 in different hydrodynamical simulations.
- NIRSpec observations will be able to distinguish among them.
- Require robust metallicity calibrations. Larger samples.

MZR Evolution at z>3

Sarkar et al. 2024

• Weak MZR evolution consistent with some simulations, not others.

 Require feedback that doesn't remove too many metals and/or accretion that doesn't cause too much dilution.

MZR Evolution at z>3

• Weak MZR evolution consistent with some simulations, not others.

 Require feedback that doesn't remove too many metals and/or accretion that doesn't cause too much dilution.

Sarkar et al. 2024

FMR Evolution at z>3

(Curti et al. 2023b)

FMR=Fundamental Metallicity Relation (M*, Z, SFR)

What Now?

• (Larger and more representative spectroscopic samples. Test feedback models. Of course.)

BUT, really.....

• Some perspective: JWST/NIRSpec enables studies at z>4 into Cosmic Dawn that were not possible previously even for Cosmic Noon!

- Robust metallicities based on high-redshift (not local) calibrations.
- Chemical abundance patterns.
- Densities.
- Dust attenuation curves.
- The truly unexpected....

Direct Metallicity Calibrations at High Redshift

• Direct-metallicity calibrations so far from CEERS (Sanders+2024) and JADES (Laseter+2024).

• Larger dynamic range needed (up to solar). Higher S/N ideal.

Direct Metallicity

Strong-line Ratio

More Direct Metallicities

AURORA Cycle 1 Program (Co-PIs Shapley+Sanders)

51 galaxies with at least 1 auroral line detection \rightarrow

- 51 new direct metallicities, including 8 at z>5.
- Robust metallicity calibrations at high redshift for large spectroscopic samples of strong emission lines.
- See also MARTA and CECILIA Cycle 1 Programs.

[OIII]4363 auroral line

Massive ($M_* \sim 10^{10} M_{sun}$)

Dusty (β=0.5)

And the spectrum.....

Large, massive, dusty, metal-rich, galaxy, with excitation properties like z~2-3 star-forming galaxies. But at z~7. How did it form???

Shapley et al. 2024a; 2024b, in prep

Large, massive, dusty, metal-rich, galaxy, with excitation properties like z~2-3 star-forming galaxies. But at z~7. How did it form???

Shapley et al. 2024a; 2024b, in prep

Large, massive, dusty, metal-rich, galaxy, with excitation properties like z~2-3 star-forming galaxies. But at z~7. How did it form???

Shapley et al. 2024a; 2024b, in prep