# **OUTFLOWS IN BLAZARS**

Claudia M. Raiteri INAF-Osservatorio Astrofisico di Torino, Italy

**Collaborators:** 

Massimo Villata & Maria Isabel Carnerero (INAF-Osservatorio Astrofisico di Torino) Jose A. Acosta Pulido (IAC, Tenerife, Spain), Stefano Vercellone & Patrizia Romano (INAF-Osservatorio Astronomico di Brera)

#### **BLAZAR** = AGN with one jet pointing toward us

Jet emission affected by relativistic effects that depend on the Doppler

factor  $\delta = [\Gamma(1 - \beta \cos \theta)]^{-1}$ 

where  $\Gamma = (1-\beta^2)^{-1/2}$  bulk Lorentz factor,  $\beta = v/c$  plasma velocity

 $\theta$  viewing angle

```
smaller \theta = stronger beaming
```



oad Line Narrow Line Region curing orus

Urry & Padovani 1995, PASP, 107, 803

**Consequences of Doppler beaming:** 

- flux relativistically enhanced  $F_{v}(v) = \delta^{n+\alpha} F'_{v}(v)$
- blue-shift of emitted frequencies  $v = \delta v'$  prevailing over cosmological redshift
- shortening of variability timescales  $\Delta t = \Delta t'/\delta$

#### ⇒ Blazars appear as luminous and very variable sources across the whole electromagnetic spectrum

### **Blazar Spectral Energy Distribution (SED)**



#### **FSRQs**

(flat-spectrum radio quasars): strong emission lines from nuclear region; low-energy peaked; (big and little blue bumps)



#### **BL Lacs**

(BL-Lacertae-type objects): weak or no emission lines; low or high-energy peaked; (host galaxy)



Raiteri et al. 2014, MNRAS, 442, 629

**Aim of the work**: disentangle the beamed non-thermal jet emission from the unbeamed thermal emission from the quasar core and study their properties

Target: FSRQ 4C 71.07 (0836+710)

#### Method:

Massive 2-year broad-band monitoring campaign by the Whole Earth Blazar Telescope (WEBT)

- + Swift (UV and X-rays) and Fermi (gamma rays)
- + Optical (WHT, NOT) and near-IR (TNG) spectra



#### Whole Earth Blazar Telescope https://www.oato.inaf.it/blazars/webt

Wide International Collaboration born in 1997 to monitor bright blazars in a continuous way thanks to the distribution in longitude of its members. Mainly optical, but also radio and near-IR photometry and polarimetry.



Multifrequency light curves dominated by jet emission variability Complex correlation between bands



#### Separation between the jet and quasar core emissions



Bolometric disc luminosity  $L(disc)=2.45\times10^{47}$ erg/s



#### Jet beamed emission: luminosity

Bolometric jet luminosity  $L(jet)=9.42 \times 10^{49} \text{ erg/s}$ 98.5% from the high-energy bump



#### **Quasar core:**

determining the systemic redshift

No narrow emission lines

 $\Rightarrow$  systemic redshift estimated from  $H\beta$  and  $H\alpha$ 

z=2.2130±0.0004

Uncertainty estimated through Monte Carlo simulations



#### **Quasar core: nuclear properties**



# Strong blueshift of high ionisation lines $\Rightarrow$ **OUTFLOW**



 $M(BH)=(2.0\pm0.7)\times10^{9} M\odot$   $L(Edd)=2.49\times10^{47} erg/s$   $L(disc)/L(Edd) \approx 1$   $R(BLR)\sim2 light years$   $L(BLR)=(1.52\pm0.14)\times10^{46} erg/s$ One of the most luminous blazar cores

#### **Quasar core: nuclear properties**

The blueshift and FWHM increase with ionizing energy ⇒ the outflow is also responsible for the line broadening (disc face-on)



The BLR is stratified and strongly affected by ionized winds, whose velocity decreases going from the inner regions, where the high-ionization lines are produced, to the outer regions, from which the low-ionization lines come from.







Observed bolometric luminosity produced by the jet versus BH mass (*Ghisellini et al 2010, MNRAS 402, 497*)

Radiative jet power ~2  $L(jet)/\Gamma^2$  versus disc luminosity (*Ghisellini et al. 2014, Nature 515, 376*)





# Comparison with other works on quasars

362 quasars from the SDSS Reverberation Mapping Project (*Sun et al. 2018, ApJ 854, 128*)



# Comparison with other works on quasars

Line flux ratios with respect to CIV in 4C 71.07 (blue dots) and in various composite quasar spectra: Cristiani & Vio (1990, black hexagons), Francis et al. (1991, green triangles), Zheng et al. (1997, magenta diamonds), Vanden Berk et al. (2001, red squares).

#### Comparison with other works on AGN



Wind mass outflow rate (left) and wind kinetic power (right) versus AGN bolometric luminosity (*Fiore et al. 2017, A&A 601, A143*)

#### Further details in

Raiteri et al. 2019, MNRAS, 489, 1837 Raiteri et al. 2020, MNRAS, 493, 2793

#### Work in progress

New optical spectra at Gemini and SOAR telescopes of a sample of FSRQ-type bright blazars at z~2 obtained in the framework of a Fermi proposal (PI: Michela Negro) to look for outflows in blazars and study their properties.

## **THANK YOU!**

## **Optical spectroscopic monitoring**



Jet not affecting the BLR