WITNESSING THE ASSEMBLY OF MASSIVE GALAXIES IN THE EARLY UNIVERSE

FRANCESCO SALVESTRINI INAF - ASTRONOMICAL OBSERVATORY OF TRIESTE

Our Team M. Bischetti - UniTs C. Feruglio - INAF OATs F. Fiore - INAF OATs F. Fontanot - INAF OATs

E. Piconcelli - INAF OAR I. Saccheo - UniRoma3 R. Tripodi - UniLjubljana A. Tostosa - INAF OAR L. Zappacosta - INAF OAR **Fundings**

- **• INAF Grant HSC Hyperion Science Collaboration (Zappacosta)**
- **• INAF Grant ARCHIE ARchive Cosmic HI & ISM Evolution (Feruglio)**

MASSIVE GALAXIES HOSTING QUASARS

See also: Volonteri+2012, Valiante+2017, Harikane+2023, Matthee+2023, Maiolino+2023

Open questions:

- ✴Are quasars (QSOs) and their host already co-evolving in the early Universe?
- $*$ Which is the evolutionary path of high-z QSOs towards local (Kormendy+13) correlation?
- $*$ How accurate are M_{BH} and M_{dyn} measurements (e.g., Lupi+24; Maiolino+24)?

✴Are luminous QSOs the progenitors of **massive and passive galaxies** at later epochs?

HYPERION QUASAR SURVEY

HYPerluminous quasar at the Epoch of ReionizatION

2 XMM-Newton Large Programs (PI:Zappacosta), 23 most massive SMBH at their epoch.

Ref: Zappacosta+23 A&A

Steep X-ray spectrum may be signature of disk-wind interaction that makes corona colder.

 X-ray steepness correlates with C IV line shift Ref: Tortosa, FS+24

ENVIRONMENT & MERGERS

JWST EIGER obs. of QSO SDSSJ0100+2802:

- Tens of [OIII] emitters detected at ∽QSO redshift.
- **The largest galaxy overdensity** known at this redshift.

ALMA [CII] obs. of SDSS J0100+2802:

• Dust-obscured merging companion undetected in JWST/NIRCAM.

$1"$ F200W **JWST**

SUB-MM VIEW OF FIRST QUASARS

THE SAMPLE (Fan+23)

We complete the survey of $z>7$ QSOs targeting CO lines with NOEMA (S23CX; PI: Feruglio).

In the end:

- **• 1 CO detection.**
- **• 5 upper limits.**
- 2 non detections.

Ref: Feruglio+23 ApJL

MOLECULAR GAS CONTENT IN THE FIRST QUASARS

$$
\log(M_{H2}) = \alpha_{CO} \times \log(L'_{CO(1-0)})
$$

- No evidence for significant evolution of the molecular gas content in the first billion years.
- Ref:
	- 1<z<5 QSOs from Bischetti+21, Bertola+24; Salvestrini+in prep.;
	- 5<z<7 QSOs from Venemans+17, Decarli+22, Kaasinen+24, Tripodi+24b;

DOES [CII] LUMINOSITY TRACE MH2?

- [CII]158μm traces different phases of the ISM (e.g., Casavecchia+24).
- M_{H2}-L_{ICIII} calibrations are mostly based on lower-z SFGs or local dwarfs (Zanella+18; Madden+20).
- Ref:
	- 5<z<7 QSOs from Venemans+17, Decarli+22, Kaasinen+24, Tripodi+24b.

DOES [CII] LUMINOSITY TRACE MH2?

Best Fit 3.4 68% Confidence Interval De Looze+14 QSOs $z>7$ QSOs $z>7$ 3.2 QSOs $5 < z < 7$ 3.0 $log(SFR/M_{\odot yr})$ 2.8 2.6 2.4 2.2 2.0 9.0 9.2 9.4 9.6 9.8 10.0 $log(L_{[CII]}/L_{\odot})$

 $log(M_{H2}/M_{\odot}) = (0.75 \pm 0.31)log(L_{[CII]}) + (2.87 \pm 0.07)$

CONTINUUM EMISSION: DUST PROPERTIES AND SFR

- We modelled the far-IR SED emission with a modified black body with the **Eos-DustFit** (Tripodi, FS+24).
- We assume
	- T_{dust} ~55 K (Tripodi, FS+24).
	- SFR \propto L_{FIR}, but ~50% of L_{FIR} due to dust heated by the QSO.

CONTINUUM EMISSION: DUST PROPERTIES AND SFR

Tripodi, FS+24

- We modelled the far-IR SED emission with a modified black body with the *Eos-DustFit* (Tripodi, FS+24).
- We assume

CONTINUUM EMISSION: DUST PROPERTIES AND SFR

- We modelled the far-IR SED emission with a modified black body with the **Eos-DustFit** (Tripodi, FS+24).
- We assume
	- T_{dust} ~55 K (Tripodi, FS+24).
	- SFR \propto L_{FIR}, but ~50% of L_{FIR} due to dust heated by the QSO.

DUST MASSES IN THE FIRST QUASARS

Copious amount of dust at z>7:

 M_{dust} $\sim 0.2 - 1 \times 10^8 M_{\odot}$

- **Dust aggregation within ISM** is highly efficient at z>7, exceeding dust destruction rates in massive systems (Popping+17).
- No evidence for an evolution of dust masses with redshift.

DUST MASSES IN THE FIRST QUASARS

Gas-to-dust ratios $GDR = M_{H2}/M_{dust}$

QSOs $5 < z < 7$

QSOs $1 < z < 5$

 9.0

8.5

• z>7 QSOs show low depletion time: $t_{dep} = M_{H2}/SFR \lesssim 0.1 Gyr$

- z>7 QSOs show low depletion time: $t_{dep} = M_{H2}/SFR \lesssim 0.1 Gyr$
- We also compare with the results from the **GAEA** semi analytical model (SAM; De Lucia+17, 24, Fontanot+20).
- QSOs from **GAEA** SAM have an extremely efficient feedback.

Star formation efficiency ($SFE = SFR/M_{H2}$) increases with redshift, but beware selection effects!

Ref: Salvestrini, in prep.

Irrespective of redshift, **SFE increases with L**bol: 1) QSO triggers SF in the host.

CONCLUSIONS

Conclusions

- ALMA is crucial to investigate the host galaxy's ISM in high-z QSOs, but a larger statistics is needed, also including the population of high-z AGN discovered by JWST.
- Among eight QSOs known at z>7, only one has a significant CO detection (Feruglio+23).
- Bright QSOs (Lbol>1046.5 erg/s) show **no evidence for evolution of dust masses and gas-to-dust ratio with redshift**.
- **GAEA** SAM predicts a rapid quench, followed by minor AGN burst at later epochs: high-z QSOs are the progenitor of massive passive galaxies?
- **SFE correlates with L_{bol}, this suggests that the physical processes that favour the** starburst phase in the host galaxy enhance the accretion onto the SMBH, igniting the QSO phase.

The results will be submitted soon (Salvestrini+): stay tuned!