JADES census of broad line AGN and their hosts

Ignas Juodžbalis (KICC, University of Cambridge)

Roberto Maiolino, Sandro Taccella, William Baker, Jan Scholtz, Xihan Ji

and the JADES collaboration

Anatomy of an AGN (Active Galactic Nucleus)

- Accretion disk surrounding a black hole heated by viscous friction.
- Precise type of AGN determined by the angle at which the disk is viewed.

The unified AGN model, Beckmann & Shrader (2012)

JADES spectroscopic sample

- The sample consists of ~5000 unique spectra spread across several tiers, differing in depth.
- First results exploring the presence of Type 1 broad line AGN in two of those tiers were presented in Maiolino+23b.
- Our current work consists of extending those methods across the entire survey. Spectrum of GN-z11 furthest type

Examples of low luminosity (type 1) AGN at z > 4 discoverd by JADES

Overmassive black holes at high redshift

Post Quasar galaxy at z = 6.7 - a case study

Faint broad H α at z=6.67

JADES GN 1146115 z = 6.677

Dust corrected ($A_v \sim 2$) BH properties:

- Log
$$M_{BH} = 8.60 \ [M_{\odot}]$$

-
$$L/L_{Edd} = 0.024$$

Being dormant (i.e. low luminosity), it is easier to identify and characterise the host

Host properties from ForcePho decomposition and photometry:

-
$$\log M_* = 8.92 [M_{\odot}]$$

- SFR =
$$1.38 [M_{\odot}/yr]$$

Comparison with other observations

Properties are consistent with scenarios envisaging super-Eddington accretion bursts

Super-Eddington bursts, despite being short and intermittent, make BH grow fast, while spending most of their life in a dormant state (hence more likely to be observed a such)

GN 1146115 is likely the tip of an iceberg

Lack of X-ray detection in JWST-selected sources

Maiolino+24

Blueshifted H α absorption in a z = 2 quasar, GN-28074.

 $logN = 14.6 \text{ cm}^{-2}$

The multitude of absorption lines allows for tight constraints on the total hydrogen column density.

 $logN = 14.9 \text{ cm}^{-2}$

CLOUDY models consistent with absorption being produced by a single cloud in the BLR and a Compton-thick environment

Matching of observed column densities with a model grid

Implied small physical scale, high density and ionization parameter

- The extreme X-ray weakness of GN-28074 may be a consequence of its Compton thickness.
- However, it is also somewhat radio weak even for a radio quiet AGN
- Could point to a lack of a corona

GN-28074 also posesses an unusual continuum shape, reminiscent of LRD sources

ID 028074, z = 2.259 Juodzbalis24b

Full JADES sample of AGN: Compact sources near the end of reionization

ID 210600, z = 6.306

Full JADES sample of AGN: Cosmic morning quasars

ID 209777, z = 3.709

Full JADES sample of AGN: Extended hosts at cosmic noon

ID 023924, z = 1.676 Tentative

In addition to the main sample, spectral stacking reveals 4 tentative broad H β sources at z > 7.5

Stack FWHM = 3255 km/s, dBIC = 72, SNR = 15

• Log $M_{BH} = 7.40 [M_{\odot}]$

- BH stellar mass relations across cosmic time:
 - No significant evolution between z = 5 and 3.5

- Sources at lower z appear to be closer to the local scaling relations, however, statistics there are small

- Most of our Type 1 sources are heavily sub-Eddington.
- Potentially probing the dormant population predicted by super Eddington growth models.

Additional object with $H\alpha$ absorption

ID 159717, z = 5.077

- There appears to be a significant population of (over-)massive yet dormant black holes in the early Universe
- This suggests an early BH growth driven by short bursts of super-Eddington accretion
- A significant fraction of low luminosity AGN appear to be Compton-thick
- The Balmer break like features seen in the continua of many low-luminosity AGN may be of non-stellar origin (Inayoshi & Maiolino 2024).

Supplemental material

AGN diagnostics at high redshift

GN 1146115 lies in the SF region of the BPT, but passes some cuts in Mazzolari+24

BH mass - sigma and dynamical mass relations

Comparison with FABLE simulations

