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The open questions

« What were the physical properties of early galaxies?

 How was early galaxy assembly dependent on the environment?

* What did early galaxies evolve into through cosmic time?

* When & how was the Universe reionized?

« What was the impact of reionization on early galaxy formation?

 What was the role of black holes in early galaxy formation & reionization?

« How many gravitational wave events do we expect from the early Universe?

 What can signals from cosmic dawn tell us about cosmology
(e.g. nature of dark matter)?
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The emergence of galaxies in the first billion years:
implications for galaxy formation & cosmology




An over-abundance of bright systems in the first billion years
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While in perfect agreement with theory at z < 10, early JWST observations showed an over-
density of bright systems at z > 11. Strong emission lines from z~5 object lead to a pathology
yielding a photometric z~16 (Arrabal-Haro et al. 2023).



Observations continue to support over-abundance of bright systems

Dust attenuation decreasing W|th z Mauerhofer & Dayal 2023
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Observations continue to support over-abundance of bright systems

Dust attenuation decreasing W|th z Mauerhofer & Dayal 2023
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Observations continue to support over-abundance of bright systems

™ Dust attenuation decreasing with z - Mauerhofer & Dayal 2023
c e rrrrrt rrrrrt rrrrrt rrrrrt [rrrr T rrrrrt rrrrrt rrrrrt rrrrrt rrrrrt rrrrrt
E 2\ z~12 z~14
. Evolving IMF - Hutter et al. 2024 | . 100% efficiency of
2SS z~12 “.._conversion of gas into
: stars
: gp Adams+23
L Harikane+23
[ { Harikane+24a
) Harikan2e;24b
_8- % E:rlzr-:—sonl;alewn
[ @ Robertson+24
NI
ER S ® AD+23a # PG+23 . oS
* HA+23a RO+23a R
¢ HA+23Db WI+23 T
HA+24 Xy

-17 -18 -19 -20 -21  -22 =23 24



Observations continue to support over-abundance of bright systems

™ Dust attenuation decreasing with z - Mauerhofer & Dayal 2023
c e rrrrrt rrrrrt rrrrrt rrrrrt [rrrr T rrrrrt rrrrrt rrrrrt rrrrrt rrrrrt rrrrrt
3 \ ’ z~12 - z~14
_ Evolving IMF - Hutter etal. 2024 . 100% efficiency of
_2_’\\ z~12 *.._conversion of gas into
§ stars
_4§
_6_ gp Adams+23
[ Harikane+23
L Harikane+24a
- Harikan2e;24b
_8- g Es;:;-gonl;ales+23
[ @ Robertson+24
R
-4 -6 18 =20 é® AD+23a PG+23 . o=l
* HA+23a RO+23a R
¢ HA+23b WI+23
HA+24
17 -18 -19 -20 -21  -22  -23 24

Possible solutions include a decreasing importance of dust attenuation with increasing redshift
(Mauerhofer & Dayal, 2023; Ferrara, Pallottini, Dayal 2023), an evolving initial mass function
(Yung et al. 2023, Cueto, Hutter & Dayal et al. 2023, Trinca et al. 2024), bursty star formation
(Mason et al. 2023, Mirocha & Furlanetto 2023, Sun et al. 2023, Nikopoulos & Dayal 2024),

black hole contribution (Ono et al. 2018, Pacucci, Dayal et al. 2022), feedback-free star
formation (Dekel et al. 2023) or low-redshift interlopers (Arrabal-Haro et al. 2023). 6
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Early observations also seem to indicate an over-abundance of massive systems at all z>7
(Labbe et al. 2023). Explaining the stellar mass density at early epochs seems to require
galaxies that can convert ALL of their baryons into stars (Boylan-Kolchin 2023). Or does a
more prosaic solution lie in evolving mass-to-light ratios at high-redshifts?



Inferred stellar mass

Stellar mass estimates very intricate at these early epochs
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True stellar mass

The initial mass function (mass
distribution of stars in a newly formed
stellar population) crucially determines

the mass-to-light ratio (Wang incl. Dayal
et al. 2024)



Stellar mass estimates very intricate at these early epochs

True stellar mass

Field-to-field variance of stellar mass can
be as large as a factor 30 - do not find
stellar masses as high as Labbe
(Desprez et al. 2023)

10y TMF .__+
] + :T_'—‘
A 9 —$—
1073 L
© ]
[o) ] b
g 108+
o ]
ks
= 1 x = 1.8
10737 4+ z=238
Y S

Log(M«) [Mo]

The initial mass function (mass
distribution of stars in a newly formed
stellar population) crucially determines

the mass-to-light ratio (Wang incl. Dayal

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

et al. 2024)
- I I I ® CANUCS (P+DB) = -
CANUCS (Bagpipes)
+ @ CEERS(Labbé+2023)
@
I @"""_:,; _____________________________ -
_ i R
- @ — - ’ —
H
' AT !
= | 1 I -
I ] I I I
6 7 8 9 10 11 0

Redshift



15
15
14-f
N 12-f

10-

Signals from cosmic dawn: implications for dark matter
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Signals from cosmic dawn: implications for dark matter
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CDM 1.5 keV WDM
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The detection of any galaxies existing in multiple JWST fields (~ 103 cMpc3) can be used to
rule out light (1.5 keV) WDM models. Crucial to derive warm dark matter mass constraints at
an epoch inaccessible by any other means.

Dayal & Giri, 2023, Dayal et al 2015, 2017, Maio & Viel 2023 10



Black holes in the first billion years: implications for the
era of gravitational wave astronomy
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Obese black holes in the first billion years in the JWST era UNC“\L,\ 4
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Explaining the supermassive black holes being observed by JWST require explanations such
as super-Eddington accretion onto low-intermediate mass seeds or Eddington accretion onto
massive (10° M) seeds that formed at z ~ 25 posing a challenge for theoretical models.

Dayal 2024; also Bogdan et al. 2023, Furtak et al. 2023; Goulding et al. 2023; Greene
et al. 2024; Kokorev et al. 2023; Maiolino et al. 2023, 24; Joudzbalis et al. 24
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Log(Mg,/Mg)

Problematic black hole to stellar mass ratios at high-z
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JWST observations seem to indicate implausibly high BH to stellar mass ratios of 30-50%
(Harikane et al. 23, Maiolino et al. 2023, 2024, Kocevski et al. 2023, Furtak (incl. Dayal) et al.
2023, Larson et al. 2023, Kokorev (incl. Dayal) et al. 2023, 2024, Bogdan et al. 2023). Solutions:

» Super-Eddington accretion onto low- or heavy-mass seeds (Schneider et al. 2023, Maiolino
et al. 2024, Furtak et al. 2024, Dayal et al. 2024)

« Initial phases in the growth of heavy seeds (Natarajan et al. 2024)

« Stellar mass hidden due to dust/low surface brightness

« Baryons exist in right amount, but were not able to form stars (Maiolino et al. 2024)

» Black hole masses over-estimated (King 2024; Lupi et al. 2024) 13



A need to revisit pathways for black hole seeding and growth
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A need to revisit pathways for black hole seeding and growth
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Given the different treatments of seeding, growth and merger timescales, different models
predict the detection of anywhere between 1-100 events per year with LISA (“Astrophysics with
LISA” white paper, 2023, LRR). Obese black holes uncovered by the JWST require revisiting
black hole seeding and growth pathways e.g. primordial BHs (Dayal 2024). 14



A primordial solution for early black holes
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Carr 2005, Mack et al, 2007, Carr & Silk 2018, Dayal 2024



A primordial origin for early black holes
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Primordial black holes that assemble their halos (and hence their baryons) around themselves
naturally yield extremely high black hole to stellar mass ratios (~0.1-1.86) i.e. in some cases, the
black hole grows to be more massive than the stellar mass of its host halo, presenting an
attractive alternative to seeding these puzzling early systems.

Dayal 2024
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Early galaxies: implications for reionization
in the era of 21cm cosmology
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The key reionization sources post-JWST
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« Escaping emissivity dominated by low-mass ( M. < 1O9M®) star forming galaxies down to z~7.

» AGN overtake the contribution from star formation at z~6.2 when reionization is 80% complete.

» AGN contribute at most 25% to the entire reionization process.

Dayal et al. 2024; Atek (incl. PD) et al. 2024



Probing key reionization sources through its topology CLIA
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Low-mass galaxies driving reionization (top panel) results in a more homogeneous distribution
of ionized regions as compared to a more biased distribution if high-mass galaxies (bottom

panel) drive the process (Astraeus VIII: Hutter, Trebitsch, Dayal et al. 2023). 19



The emerging picture..

* Recent JWST observations indicate an over-abundance of luminous systems at z>10 - could
be explained by bursty/extremely efficient SF, decreasing effects of dust, evolving IMF,
interlopers..

» JWST detections of exceptionally massive systems in terms of stellar mass could be
explained by varying IMFs, cosmic variance - no breaking of LCDM as of now.

» Multiple field studies with the JWST can be used to rule out light (<3keV) WDM models simply
using the observed stellar masses.

« JWST vyielding a sample of numerous and obese black holes as early as z~10 with black hole
to stellar mass ratios as high as 50% - solutions include extremely efficient black hole growth,
inefficient stellar growth or extremely early origins of BH seeds. The presence of such black
holes also has important connotations for the GW event rates expected from LISA.

» L ow-mass star forming galaxies ( < 1O9M® in stellar mass) are indicated to be the key

reionization drivers. Galaxy-21cm correlations will be crucial in shedding light on the patchy
topology of reionization and constraining the average neutral fraction.




