Mapping the multi-wavelength structures of SMGs with JWST

Beyond the Edge of the Universe 24th October 2024

Rachel Cochrane, Columbia University —> University of Edinburgh

with help from the PRIMER Team

Sintra, October 2024

 $z_{\rm p} = 2.68$

S870=1.2 mJy

Mapping the multi-wavelength structures of SMGs with JWST

Beyond the Edge of the Universe 24th October 2024

Rachel Cochrane, Columbia University —> University of Edinburgh

with help from the FIRE Team

Sintra, October 2024

'Extreme' sub-millimetre -selected sources

Hughes et al. 1998

Sintra, October 2024

JCMT

ALMA has located and resolved large samples of SMGs

Simpson et al. 2015

Sintra, October 2024

Stach et al. 2019

Typically M^{*} ~10¹¹ M ∘ galaxies forming stars at hundreds of solar masses per year at z~2-4

But stellar emission was faint...

Sintra, October 2024

SHiZELS-14, z=2.24

S₈₅₀~5mJy

Cochrane+21

But stellar emission was faint...

ALMA imaging of ALESS galaxies at z~2.5 (Hodge *et al. 16*)

extended.

Sintra, October 2024

At ~0.15" resolution, the 870-micron emission appears smooth and compact, whereas the rest-frame optical structures mapped by HST tend to be more

PRIMER imaging of UDS

Sintra, October 2024

Dec

JWST is revealing stellar structures of more 'typical' SMGs in fine detail!

Heterogeneous population:

1/3 Major mergers

See also: Chen+22, Cheng+23, Gillman+23,24, *Huang+23, Liu+24,* Rujopakarn+23

Sintra, October 2024

PRIMER NIRCam imaging of UDS; Jim Dunlop Rachel Cochrane, <u>rcochra3@ed.ac.uk</u>

JWST is revealing stellar structures of more 'typical' SMGs in fine detail!

Heterogeneous population:

1/3 Minor mergers/nearby small companions

See also: Chen+22, Cheng+23, Gillman+23,24, *Huang+23, Liu+24,* Rujopakarn+23

Sintra, October 2024

PRIMER NIRCam imaging of UDS; Jim Dunlop Rachel Cochrane, rcochra3@ed.ac.uk

JWST is revealing stellar structures of more 'typical' SMGs in fine detail!

Heterogeneous population:

1/3 Isolated

See also: Chen+22, Cheng+23, Gillman+23,24, *Huang+23, Liu+24,* Rujopakarn+23

Sintra, October 2024

PRIMER NIRCam imaging of UDS; Jim Dunlop Rachel Cochrane, <u>rcochra3@ed.ac.uk</u>

NIRCam photometry

NIRCam F444W image

Deblended Components

1 catalogue of SMGs, 1 catalogue of companions

Sintra, October 2024

- F444W-based segmentation maps, with further deblending where necessary. Manual SMG identification using ALMA data.
- Also extract photometry for non-SMG companions.
- Some sources showed substantial IRAC blending - can easily identify these by comparing CH2 with F444W and excluding CH3 and CH4 data from SED fit.

NIRCam photometry

NIRCam F444W image

Deblended Components

1 catalogue of SMGs, 1 catalogue of companions

Sintra, October 2024

Demographics - SMGs

Sintra, October 2024

Demographics - companions

Sintra, October 2024

NIRCam F444W image

Rachel Cochrane, rcochra3@ed.ac.uk

Size/shape measurements

- to isolate the SMG from companion(s).
- Rsérsic and nsérsic derived from fitting 2D profile

Sintra, October 2024

• Using statmorph Python package (Rodriguez-Gomez et al. 2019) to characterise sizes and shapes, using the segmentation map

Fitted model Residual

Many clear spiral arms and bars

Original image

$R_s = 0.29 \operatorname{arcsec}$ $n_{s} = 1.09$

Fitted model

Original image

Fitted model

Residual

Sintra, October 2024

Sizes are strongly wavelength-dependent

Sintra, October 2024

870 µm F150W F277W F444W

1.0

- Sizes calculated using several NIRCam bands: F150W, F277W, F444W.
- Shorter wavelengths more extended.
- 870um sizes for the subset of sources measured by Gullberg+19 are even smaller than the F444W measurements.

Shape classfications are also wavelengthdependent

Sintra, October 2024

A galaxy seen only in shorter wavelength emission is much more likely to be classified as a merger

- Gini: a measure of the degree of distribution of flux amongst pixels. When Gini=1, all flux is measured within a single pixel, and when Gini=O, flux is evenly distributed.
- M₂₀: a measure of the concentration of light within an image, calculated by comparing the second moment of the brightest regions (containing 20%) of the total flux to the second moment of the total flux.

Forward-modelled zoom-in simulations can help with physical understanding of varying size and shape measurements

FIRE simulations of massive galaxies (reaching 10^11M_sol by z~2) + SKIRT continuum radiative transfer

Sintra, October 2024

Cochrane et al. 2019

Stellar mass

Optical: 7000Å

Near – IR : $1.6\mu m$

Far – IR : 250µm

Evolution of multi-wavelength emission with time during a compact, dusty starburst event

Sintra, October 2024

z=2.3 $M = 10^{10.8} M \odot$

Cochrane et al. 2023b

Evolution of multi-wavelength emission with time during a compact, dusty starburst event

Cochrane et al. 2023b

Sintra, October 2024

Kiloparsec-scale offsets between the rest-UV and far-IR are driven by heavy central dust obscuration. Rest-UV light is clumpy and disordered (could be mis-classified as merger once convolved with PSF)

Evolution of multi-wavelength sizes with time during a compact, dusty starburst event

Observed rest-UV-NIR sizes remain roughly constant, ~2kpc throughout the starburst, even though the intrinsic half-SFR size decreases to 0.1kpc, due to heavy central dust obscuration.

Sintra, October 2024

Cochrane et al. 2023b

Sintra, October 2024

z=3.3+-0.1 $\log_{10}(M*/M\circ) =$ 10.7 + -0.1

SFR = 550+160-120M o /yr

z=3.3

 R_{50} (mass) 0.45" = 3.5kpc R_{50} (SFR) 0.33" = 2.5kpc R₅₀ (light) at different wavelengths (from short to long): [0.93, 0.81, 0.66, 0.57, 0.51, 0.45]" = [7.1, 0.45]6.2, 5.1, 4.4, 3.9, 3.5] kpc

Sintra, October 2024

half-SFR radius is more compact than stellar mass, and than light at any wavelength

Sintra, October 2024

z=2.2+-0.1 $\log_{10}(M*/M \circ) =$ 11+0.1-0.2 SFR = 370+80-70M °/ yr

z=2.2

 R_{50} (mass) 0.66" = 5.6kpc R_{50} (SFR) 0.33" = 2.8kpc R₅₀ (light) at different wavelengths (from short to long): [0.45, 3.3, 3.3, 3.3] npc

Sintra, October 2024

half-SFR radius is more compact than light at any wavelength, though stellar mass is more extended

Physical picture

Sintra, October 2024

- Rest-frame UV-NIR emission typically more extended than SFR (and sometimes irregular) due to heavy central dust obscuration.
- Sub-mm sizes are even more compact than F444W, due to very compact star formation. Note: these sizes are potentially significantly more compact than the dust itself (emission is biased tracer of dust mass due to steep SFRdriven dust temperature gradients; Cochrane+19)

Remaining questions

 Physical understanding of submm-triggering mergers/interactions, disk instabilities?

Challenge: need larger samples of very highresolution simulated SMGs (ideally at brighter flux densities) than are currently available

Sintra, October 2024

Summary

- interactions.
- steep dust temperature gradients.
- wavelength emission.

 Huge progress locating, characterising and spatially-resolving SMGs with sub-mm interferometers and JWST. Emerging picture of a heterogenous population of isolated disks, major/minor mergers and

• There is a large variation in sizes and morphologies with wavelength, with shorter-wavelength NIRCam emission typically more extended, likely due to heavy central dust obscuration. Sub-mm sizes are typically even more compact than F444W, due to very compact star formation (also inferred from spatially-resolved SED fitting) driving

• Paths forward: more high-resolution simulations + RT to understand triggering, validating using JWST-informed merger fractions and multi-

