

AGN outflows and jets

Vincenzo Mainieri (ESO)

Chiara Circosta, Elena Bertola, Chris Harrison, Darshan Kakkad, Giulia Tozzi, Samuel Ward

e.g., Croton+06; Bower+06; Gaspari+11; Dubois+13; Hirschmann+14; Khandair+14; Vogelsberger+14; Crain+15; Henriques+15; Choi+18 +++

AGN as a main actor in galaxy evolution?

• AGN are events

- Single events can have a localized impact
- Cumulative events can have a global impact

Harrison & Ramos Almeida 2024

Croft et al. 2006 & Lacy et al. 2017 Vincenzo Mainieri – Deep24

• Single events can have a localized impact

• Cumulative events can have a global impact

Harrison & Ramos Almeida 2024

- Single events can have a localized impact
- Cumulative events can have a global impact

Harrison & Ramos Almeida 2024

Harrison & Ramos Almeida 2024

• AGN are events

- Single events can have a localized impact
- Cumulative events can have a global impact

Harrison & Ramos Almeida 2024

AGN feedback is a multi-scale and multi-phase problem

Observational approaches/tests to AGN feedback

Kinematics from emission and absorption lines: multi-phase outflows and gas turbulence

❑Flux ratios: ionization/shocks/heating

 \blacksquare Infer potential impact indirectly: measure outflow rates, coupling efficiency

 \blacksquare "Direct" impact: measurements of gas content, star-formation and stellar populations

Theory

 \mid "Observational experiments": what can we (not) learn from observed AGN outflow properties?

Ionized gas kinematics

Extreme gas kinematics: statistical approach

■ AGN-driven ionized outflows dominated the most massive bin (log M_{star} >10.8 M_{Sun})

141 MS galaxies at 1.2<z<2.6

Extreme gas kinematics: statistical approach

■ Higher prevalence of [OIII] outflows in AGN with with moderate radio luminosities (compact rather than extended jets)

Also see, e.g., Zakamska & Greene 2014; Bischetti+17; Molyneux+19; Kukreti+23

Radio-ISM interaction

Extreme gas kinematics: individual studies

Nesvadba+08; z~2 powerful radio galaxy (and quasar)

offset [kpc]
0 10 Western lobe $^{\prime}$ 20 0 30 -20 -10 40 Warm molecular gas [O III] velocity width $5¹$ 40 $H₂$ 4 30 H_2 1-0S(1) -600 km/s 3 Rest-frame velocity $(km s⁻¹)$ 20 **Nucleus** offset [arcsec] 2 offset [kpc] 10 \circledcirc 1500 -500 Rest-frame velocity (km s⁻¹) -10 **Fastern Johe** 1000 -2 -20 -3 500 -30 $\overline{5}$ -3 -2 -1 0 1 2 З 4 offset [arcsec] Rest-frame velocity (km s⁻¹)

Tahunter+14; z~0 Seyfert; moderate radio;

High velocities (and shocks/ionization) alignment with jets

Extreme gas kinematics: individual galaxies (spatially resolved)

Girdhar et al. (2022); z~0.1 'radio quiet' quasar, ~1kpc low power jet inclined into disk

Also see, e.g., Nesvadba+08,17a,b; Couto+13; Riffel+14; Mahoney+16; Aalto+16; Husemann+19; Bischett+19; Venturi+21; Fernandez-Ontiveros+20; Smethurst+21; Zanchettin+21; Bianchin+22; Speranza+22; Audibert+23; Zanchettin+23

Extreme gas kinematics: individual galaxies (spatially resolved)

Girdhar et al. (2022); z~0.1 'radio quiet' quasar, ~1kpc low power jet inclined into disk

Also see, e.g., Nesvadba+08,17a,b; Couto+13; Riffel+14; Mahoney+16; Aalto+16; Husemann+19; Bischett+19; Venturi+21; Fernandez-

Extreme gas kinematics: statistical approach at z~2 (Tozzi+24, SUPER)

❑Fast ionized outflows more prevalent in Type-2 than Type-1: radiation pressure on dust as driving mechanism

Outflow velocities comparable with v_{esc} : gas relocated at least to 30-50 kpc from the centre

■ AGN-driven outflow (± 200-100 km/s) along the ionization cone

❑Jet-disk interaction induces shock and increase the turbulence of the gas in perpendicular direction to the ionization cone and jet axis

Venturi+21: IC 5063; z~0 Seyfert; low power jet in disk (MAGNUM survey)

Gas heating

Rosario et al. 2019; NGC 2110; local Seyfert

■ AGN radiation or AGN induced shocks deplete of CO (cold molecular gas) the circum-nuclear region

Also see e.g., Nesvadba+11; Riffel+15; Shimizu+19; Zovaro+19a,b; Santoro+20; Ramos Almeida+22; Murthy+22; Morganti+22; Ruffa+22

Warm molecular gas content and kinematics in AGN with ionized outflows MIRI-MRS follow-up in Cy-1 and Cy-2 (SUPER; Kakkad et al. in prep)

Warm molecular gas content and kinematics in AGN with ionized outflows MIRI-MRS follow-up in Cy-1 and Cy-2 (SUPER; Kakkad et al. in prep)

Warm molecular gas content and kinematics in AGN with ionized outflows MIRI-MRS follow-up in Cy-1 and Cy-2 (SUPER; Kakkad et al. in prep)

The molecular gas fraction in AGN and non-AGN galaxies are statistically different: AGN activity depleting the cold gas reservoirs? (SUPER+ KASHz; Bertola+24)

Also see e.g., Carniani+17; Brusa+18; Vietri+18; Perna+18; Loiaconoi+19; Bischetti+21; Frias Castillo+24

"Direct" impact on star-formation

 500

 $v = [-300, 300]$ km s⁻¹

SF as traced by narrow $H\alpha$ removing the AGN contamination.

- The outflow is located in region with low SF (negative feedback?)
- Blobs of enhanced SF at the edge of the outflow (positive feedback?)

No clear sign of suppressed SF at the location of the outflow.

- Impact on scales below the resolution (~2 kpc)
- The wide time range sample may dilute recent (last Myrs) impact

Young Stellar Population (YSP, <100 Myr) enhance at the location of the highest blue-shifted velocities (positive feedback)

YSP percentage not enhance in the location of highest gas turbulence (preventive feedback)

Also see, e.g., Dey+97; Bicknell+00; Salomé+20; Cresci+15; Cresci & Maiolino 2018; Scholtz+20,21; Nesvadba+21; Girhdar+22; Capetti+22; Venturi+23

"Observational experiments"

Ward, Costa, Harrison & Mainieri (2024)

Inject quasar winds into galaxy disks

Inject AGN wind into static disk: (model from Costa+20)

$$
\dot{E}_w = \frac{v_w}{2c} L_{AGN}
$$

Ward, Costa, Harrison & Mainieri (2024)

Fiducial model:

 L_{AGN} = 10⁴⁵ erg/s $V_w = 10^4$ km/s Disk: d=4kpc, h=1kpc **Hydro-code:** AREPO: **Resolution:** reaches ~1pc **Includes primordial cooling**

Outflows "vents" through paths of least resistence

Realistic ISM leads to very different predictions

 V_{min} = 10 km/s (physical & "complete") v_{min} = 100 km/s (representative observational limit)

 m_i

Ward, Costa, Harrison & Mainieri (2024)

 $10⁶$

 10^5

 $10⁴$

 ${\rm Mass}\ /\ ({\rm M}_\odot\ {\rm/km\ s^{-1}})$

Clumpy disks: No characteristic velocity

A lot of **outflowing** mass at low velocities

Cold gas

Large clumps Medium clumps

Small clumps

 $t = 1.0$ Myr

Smooth

10 100 400 velocity (km/s

How efficiently the AGN wind couples to the ISM?

Low measured kinetics coupling efficiencies:

- Energy losses (gravitational work, radiative cooling)
- Missing phases

Observed kinetic coupling efficiencies may provide limited information on potential impact!

Note: "Feedback Efficiencies" in cosmological feedback models are NOT the same as kinetic coupling efficiencies.

Ward, Costa, Harrison & Mainieri (2024)

Take away messages

 \blacksquare AGN feedback is a multi-phase, multi-timescale, and multi-spatial problem.

❑Observational evidence that AGN radiation/winds/jets may affect the ISM in multiple way: it does not have to be necessarily ejective.

 \blacksquare AGN are events in the life of a galaxy: the single AGN feedback episode may have localized impact; the cumulative effect of multiple such events can have a more global impact.

Large spatially resolved surveys across wl: JVLA (SKA), ALMA (WSU), opt-IR IFUs from the ground (ELT), JWST, X-ray (AXIS, Athena)

❑Observed outflow properties can not trivially be used to determine outflow impact and driving mechanisms.

> Carefully-constructed simulations to test "specific" models and reconstruct "observational experiments"